Arithmetic

Numbers

<u>Definitions</u>

```
Natural: 0, 1, 2, 5, 9, 103, ...; notation N

Integers: ..., -67, -4, 0, 6, 89, ... (natural, positive and negative); notation Z

Rational: 3/4, -5/8, 59/34, 4.29, -5.782, ... (also known as "fractions"), notation Q

Decimal: 3.56, -9.604, ... (whole part plus decimal/fractional part) Conversion between rational and decimal example: 3/4 = .75; 4.57 = 457/100

Irrational (transcendental), p = 3.14159; notation I

Note: they can NOT be converted to rational numbers! (without losing precision)

Real: Natural + Integers + Rational + Irrational; notation R

Complex: 3 + i7, -5 + i2, -i5, ..., where i = v-1 initially called "imaginary" number; notation C; C = R + pure "imaginary" numbers (containing i)
```

Properties

Prime numbers = a natural number that can not be divided by any other number except for 1 and itself.

Factoring: decomposition of any Natural number into prime numbers. Example: 12 = 2 * 2 * 3, where 2 and 3 are prime numbers.

Operations with numbers: addition, subtraction, multiplication and division. It works "more of less different" depending on the type of numbers involved.

Least common multiplier and larger common denominator.

Famous Constants

Pythagoras' Constant (from the name of a famous Greek mathematician)

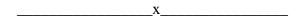
The diagonal of a unit square has length v2 = 1.14142135624... A theory, proposed by the Pythagorean school of philosophy, maintained that all geometric magnitudes could be expressed by rational numbers. The sides of a square were expected to be commensurable with its diagonals, in the sense that certain integer multiples of one

would be equivalent to integer multiples of the other. This theory was shattered by the discovery that v2 is irrational.

The Golden Mean?

We start with a problem in aesthetics. Consider the following line segment:

What is the most "pleasing" division of this line segment into two parts? Some people might say at the halfway point:



Others might say at the one-quarter or three-quarters point. The "correct answer" is, however, none of these, and is found in Western art from the ancient Greeks onward (art theorists speak of it as the principle of "dynamic symmetry"):

Here, if the left-hand portion is of length u=1, then the right-hand portion is of length v=0.6180339887... A line segment partitioned as such is said to be divided in Golden or Divine section. What is the justification for endowing this particular division with such elevated status? The thinking is that the length u, as drawn, is to the whole length u+v, as the length v is to v. In symbols,

$$u/(u + v) = v/u$$

Letting? = u/v , we solve for? by observing that? $^2 - ? - 1 = 0$
So,? $_1 = (1 + v5)/2 = 1,6180339887...$, and? $_2 = (1 - v5)/2 = 0.6180339887...$

The Natural Logarithmic Base

e = 2.7182818284... discovered by the Scottish mathematician John Napier.

$$e = \lim_{n \to 8} S(1/n!)$$

Archimedes' Constant

p = 3.141592653... discovered by the famous Greek mathematician when dividing the perimeter of a circle by its diagonal.

Numbering Systems

Definitions

Base or radix: 10, 2, 8, 16, etc.

General *representation*: $378 = 3 * 10^2 + 7 * 10^1 + 8 * 10^0$ also known as

"positional" notation

Conversions: using the "modulo algorithm"

Number Base Systems - Example

decimal	binary	ternar	y octal	hexadecimal
0	0	0	0	0
1	1	1	1	1
2	10	2	2	2
2 3	11	10	3	3
4	100	11	4	4
5	101	12	5	5
6	110	20	6	6
7	111	21	7	7
8	1000	22	10	8
9	1001	100	11	9
10	1010	101	12	A
11	1011	102	13	В
12	1100	110	14	C
13	1101	111	15	D
14	1110	112	16	E
15	1111	120	17	F
16	10000	121	20	10
17	10001	122	21	11
18	10010	200	22	12
19	10011	201	23	13
20	10100	202	24	14

Average (Mean)

Definitions

Arithmetic: $1/n * ? (x_i)$, i = 1, ..., n, and x_i can be any value; example: 1/3 (5+6+7)=6

Geometric: n^{th} root of ? x_i , i = 1, ..., n, and x_i can be any value; example: 3^{rd} root of (1 * 5 * 25) = 5

Harmonic: n / ? $(1/x_i)$, i = 1, ..., n, and x_i can be any value; example: 2/(1/2 + 1/3) = 12/5 = 2.4

Weighted: $1/n * ? (w_i * x_i)$, i = 1, ..., n, and x_i can be any value; example: 1/4 (2*3 + 2*1 + 4*2 + 0*15) = 4

Progressions

Definitions

Arithmetic: a, a + 2r, a + 3r, a + 4r, ..., a + (n-1)r, where a and r can be any value

Geometric: a, a * r, a * r^2 , a * r^3 , a * r^4 , ..., a * $r^{(n-1)}$, where a and r can be any value

Harmonic: 1/a, 1/(a + r), 1/(a + 2r), 1/(a + 3r), ..., 1/(a (n-1)r), where a and r can be any value

Series

Definitions

Fibonacci (from the name of a famous Italian mathematician) series: $F_0=0,\,F_1=1,\,F_2=F_0+F_1,\,\ldots,\,F_n=F_{n\text{-}1}+F_{n\text{-}2}$

One of very interesting properties of this series is that $\lim_{n\to 8} F_n/F_{n-1} = ?$ (the Golden Mean)!

Geometry

Point, Line, Curves

Definitions

1, 2, 3, ..., n dimensions

Properties

Continuity
Concavity vs. convexity

Parallelogram

Perimeter: P = 2 * (length + width)Area: A = base * height

Rectangle

Perimeter: P = 2 * (length + width)Area: A = length * width

Square

Perimeter: P = 4 * sideArea: $A = side^2$

Trapezoid

<u>Perimeter</u>: P = 2 * (length + width)<u>Area</u>: A = 1/2 * height * (base1 + base2)

Triangle

Perimeter: P = side1 + side2 + side3Area: A = 1/2 * side * height

Circle

Perimeter: P = 2 * p * radiusArea: $A = p * radius^2$

Ellipse

<u>Perimeter</u>: $P = 2 * p * v1/2(radius1^2 + radius2^2)$ <u>Area</u>: A = p * radius1 * radius2

Cylinder

<u>Volume</u>: $V = p * radius^2 * height$ <u>Surface</u>: S = 2 * p radius * height

Sphere

<u>Volume</u>: $V = 4/3 * p * radius^3$ <u>Surface</u>: $S = 4 * p * radius^2$

Cone

<u>Volume</u>: $V = 1/3 p radius^2 * height$ $<u>Surface</u>: <math>S = p radius * v(radius^2 + hieght^2)$

Pyramid

 $\underline{\text{Volume}}$: V = 1/3 * S * height

Surface: S = depends on its shape; if a square, then $S = \text{side}^2$

Cube

<u>Volume</u>: V = side * side * side, or side³

 $\overline{\text{Surface}}$: S = 6 * side²

Algebra

Proportions

Definitions

$$a/b = c/d$$

Properties

$$(a + b) / b = (c + d) / d$$

 $(a - b) / b = (c - d) / d$
 $(a - b) / (a + b) = (c - d) / (c + d)$

Powers and Roots

Definitions

 $x^n = x * x * x * \dots x$ (n times); x is called the *base* and n the *exponent*; the entire expression is called a *power*.

nth root of x equals a number that raised to power of n will produce x.

Properties

$$\begin{array}{l} x^{a} * x^{b} = x^{(a+b)} \\ x^{a} * y^{a} = (x * y)^{a} \\ (x^{a})^{b} = x^{(ab)} \\ x^{(a/b)} = b^{th} \ root \ of \ (x^{a}) = (b^{th} \ v(x) \)^{a} \\ x^{(-a)} = 1 \ / \ x^{a} \\ x^{(a-b)} = x^{a} \ / \ x^{b} \end{array}$$

Logarithms

Definitions

$$y = log_b(x)$$
 if and only if $x = b^y$

Properties

$$\begin{split} \log_b{(1)} &= 0 \\ \log_b{(b)} &= 1 \\ \log_b{(x^*y)} &= \log_b{(x)} + \log_b{(y)} \\ \log_b{(x/y)} &= \log_b{(x)} \text{-}\log_b{(y)} \\ \log_b{(x^n)} &= n\log_b{(x)} \\ \log_b{(x)} &= \log_b{(c)} * \log_c{(x)} = \log_c{(x)} / \log_c{(b)} \\ \ln &= \log_c{(natural\ logarithm)}, \ where \ e = 2.7182818284... \\ \lg &= \log_{10} \end{split}$$

Vectors

Definition

$$V = (a_1, a_2, a_3, ..., a_n)$$
, where n is a Natural number

Operations

Multiplication by a scalar: $k * V = (k * a_1, k * a_2, k * a_3, ..., k * a_n)$, where n and k are Natural numbers

 $\label{eq:Addition/subtraction of a scalar: } Addition/subtraction of a scalar: k+V = (k+a_1, k+a_2, k+a_3, ..., k+a_n), \\$ where n and k are Natural numbers

Addition/subtraction of two vectors: $V + W = (a_1 + b_1, a_1 + b_2, a_1 + b_3, ..., a_1 + b_n)$, where n is a Natural number, and $V = (a_1, a_2, a_3, ..., a_n)$ and $W = (b_1, b_2, b_3, ..., b_n)$

Matrices & Determinants

Definition

Example: A 3 x 3 matrix looks like

$$A_{3,3} = \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}$$

or, in general, $A_{n,m} = \{a_{i,j} \mid i = 1, ..., n \text{ and } j = 1, ..., m; n, m \in N\}$

Operations

Addition of two matrices: (note both matrices MUST be of same dimension, e.g., 3 x 3 in the following example,

 $A_{3,3} + B_{3,3} = C_{3,3}$, as follows:

Multiplication by a scalar:

 $k * A_{3,3} = B_{3,3}$ as follows:

$$B_{3,3} = \begin{array}{c} k * a_{11} \ k * a_{12} \ k * a_{13} \\ k * a_{21} \ k * a_{22} \ k * a_{23} \\ k * a_{31} \ k * a_{32} \ k * a_{33} \end{array}$$

 $\textit{Multiplication of two matrices} : A_{n,m} * B_{m,p} = C_{n,p} \text{ where } C_{n,p} = \{c_{i,j} = ?_{k=1,m} \ a_{ik} * b_{kj} \mid i=1, \ldots, n \text{ and } j=1, \ldots, p; \ n, \ p \in N\}$

Combinatorics

Factorial

Definitions

```
n! = 1 * 2 * 3 * ... * n

Recursively, n! = n * (n-1)
```

n! can be approximated by *Stirling*'s formula (famous English mathematician), $n! = e^{-n} * n^n * 2 vp * n$, where e and p are two of the famous constants explained above.

Arrangements or Permutations

Definitions

$$P(n,m) = n! / (n - m)! = n * (n-1) * ... * (n - m + 1)$$

Combinations

Definitions

$$C(n,m) = n! / [m! * (n - m)!] = P(n,m) / m!$$

Properties

$$C(n,m) + C(n,m+1) = Cn+1,m+1$$

 $C(n,m) = C(n,n-m)$

Binomial formula (Newton's - famous English mathematician): $(1 + x)^n = Cn, 0 * x^0 + Cn, 1 * x^1 + Cn, 2 * x^2 + ... + Cn, n * x^n$

Pascal's triangle - famous French mathematician: Cn,0 + Cn,1 + ... + Cn,n = 2^n

Randomization

Definitions

A *random number* is a number chosen arbitrarily. It can be pulled from already developed tables or using a *randomizing function* or *algorithm*.

Sorting Algorithms

Definitions

Arranging a string of values in a given (ascending or descending) order.

Algorithms:

Quick Sort (Hoare's algorithm - famous English mathematician)

"Bubble" Sort

This area to be covered (in more detail) during the class, as possible.

Data Structures

This area to be covered during the class, as possible.

Types

Definitions

Stack
Queue
Linked List
Simple
Double

Trees

Binary Balanced

Properties

Stack
Queue
Linked List
Simple
Double
Trees
Binary
Balanced

Operations

Search Insert Delete Update Traverse

File Organization & Access

This area to be covered during the class as possible.

Declaration

Definitions

Layout Buffering

Media

Definitions

Tape Diskette Disc

Properties

Tape Diskette Disc

Organization

Definitions

Sequential Indexed-Sequential Direct/Random

Properties

Sequential Indexed-Sequential Direct/Random

Access

Definitions

Sequential Indexed (multi) Direct

Properties

Sequential Indexed (multi) Direct

Maintenance

Definitions

<u>Issues</u>

Operations

Definitions

Open Read Write Update Append Close

Properties

Open Read Write Update Append Close