Basic Mathematics

• Foundations of Mathematics

- Mathematical Logic
 - Propositions: True and False
 - Relations: binary, reflexive, symmetric, anti-symmetric, transitive, equivalence
 - Reasoning: inductive, deductive, direct proof, proof by contradiction
 - Axiomatic Method
- Boolean Algebra
 - Truth Tables
 - De Morgan Laws
- Set Theory
 - Elements, Void/Empty Set and Universal Set
 - Venn Diagrams
 - Sets Properties
 - Operations with Sets

Arithmetic

- Number Theory
- Number Concepts
 - Numbers as Abstraction
 - Elementary Number Theory: Successions and Congruence
 - Basic Operations with Numbers
 - English and Metric Measurement Systems
 - Odd, Even and Prime Numbers
 - Factors and Multiples
- Integers
 - Positive and Negative
 - Infinity
 - Geometric Representation
- Rational Numbers
 - Ratio
 - Basic Operations with Rational Numbers
 - Least Common Denominator
 - Proportions and Properties
 - Percent
- Irrational Numbers
- Real Numbers
- Elementary Algebra
 - Algebra as Number Abstraction
 - Fundamental Operations and Properties
 - Monomials and Polynomials
 - Fundamental Operations

- Algebraic Functions
- Linear, Quadratic and Higher Degree Equations and Inequalities
- Systems of Equations and Inequalities
- Radicals and Exponents; Translations
- Progressions: Arithmetic, Geometric, Harmonic, Weighted
- Complex Numbers
- Elementary Geometry
 - 2-dimension space
 - 3-dimension space
 - Properties: Reflection, Rotations, Translation
 - Intersections and Angles: Acute, Obtuse, Right
 - Congruence and Similarity
 - Parallelism and Orthogonality (Perpendicularity)
 - Graphing Points, Lines and Planes
 - Geometric Properties
 - Triangle: right, isosceles, scalene, equilateral, segments, angles, altitude, median, properties
 - Parallelogram, Rectangle, Square
 - · Rhombus and Trapezoid
 - Polygons
 - Circle
 - Pyramid
 - Cube
 - Cone
 - Cylinder, Sphere
 - Perimeter / Circumference, Area / Surface, Volume
 - Physical properties: Mass, Time, Temperature
 - Theorems; Pythagorean
 - Geometric Constructions
 - Straight-edge and compass
 - Proving the constructions
 - Euclidean vs. Non-Euclidean Geometry
 - n-dimension space
- Trigonometry
 - Coordinate system, 2- and 3-dimensions
 - Degrees and Radians
 - Six relationships between angles and edges
 - Graphing: period, amplitude, displacement, shift, asymptote
 - Functions
 - Laws of Sinus, Cosines, Tangent and Cotangent
 - Hypergeometric Functions

- Formulas and Functions
- Proving Identities
- Solving Trigonometric Equations and Inequalities
- Conversion between Rectangular and Polar Coordinate Systems
- Trigonometric Form of Complex Numbers; DeMoivre's Theorem
- Mathematics of Finance
 - Compound Interest
 - Present Value
 - Future Value
 - Annuities
 - Amortization of Loans
 - The Rule of 78's

Advanced Mathematics

- Algebra
 - Absolute Value
 - Fractional and Negative Exponents
 - Scientific Notation
 - Quadratic Inequalities
 - Real and Complex Numbers; Properties
 - Logarithms
 - Linear and Abstract Algebra
 - Properties of Groups, Rings and Fields
 - Matrices and Determinants; Inverse and Properties; Operations
 - Vector and Vector Spaces
 - Cramer's Rule
 - Linear Transformations
 - Linear Programming
 - Linear Inequalities
 - Multiple Optimum Solutions
 - Simplex Method
 - Minimization

Analytical Geometry

- Cartesian Coordinates
- Equations of Lines and Planes
- Calculations: Distance between Points, Lines, and Planes
- Translation between geometric definition and conic section and its equation
- Calculus
 - Finite vs. Infinity
 - Functions
 - domain
 - range
 - intercepts
 - symmetries
 - intervals
 - increase and decrease in continuity
 - asymptotes
 - Functions
 - Algebraic
 - Trigonometric
 - Logarithmic
 - Exponential
 - Composite and Inverse Functions

- One-to-one mapping
- Recursive Functions
- Graphical Representation and Properties of Functions; Applications
- Series; Taylor Series
- Mapping into or onto a Set
- Convergence of Series; Standard Tests
- Limits; Continuity
- Epsilon-Delta Proof
- Difference between Continuity and Differentiation
- L'Hospital's Rule
- Maxima and Minima; Concavity
- Newton's Method
- Differentials
- Relate the derivatives of a function to a limit and to the slope of a curve
- Least Upper Bound Properties
- Polar Coordinates
- Derivatives; properties and applications
- Chain Rule and Power Rule
- Higher-Order Derivatives
- Integrals: properties and applications
- Standard Derivation and Integration Techniques
- Integration by Parts, Partial Fractions
- Integration by Tables
- Single vs. Multiple Variables Calculus
- Partial Derivatives
- Multiple Integrals
- Numerical Approximations; Estimation and Errors
- Applications: rates, approximation of roots, calculating areas of plane figures and volumes of solids

• Computer Science and Discrete Mathematics

- Symbolic Logic
- Numbering Systems and Conversions
- Algorithms
- Pseudocode
- Data Structures
- Basic Computer Architecture
- Problem Solving Process
- SDLC
- Simple Computer Programs

Statistics and Probabilities

Probabilities

- Counting Principles
- Permutations, Arrangements, Combinations
- Expectations
- Finite and Continuous Probability
- Events; Independence
- Conditional Probability
- Bayes Formula
- Binomial Distribution
- Random Variables
- Applications

• Statistics

- Data
- Representation of Data
- Histograms, Leaf-and-Stem, Bar and Paretto Charts, Pie Charts, Run Charts
- Summarization of Data
- Sample vs. Population
- Range, Frequency, and Distribution
- Mean, Mode, Median, as measures of Central Tendency
- Variations, Deviation, Standard Deviation
- Sampling Methods and Sampling Distributions
- Normal Distribution; Properties
- z-values
- t-Student values (small samples)
- Hypothesis Testing: Null and Alternative
- Types of Errors
- One- and Two-Tale Test
- Proportions
- Sample Size
- F-values
- Chi-Square Distribution
- Correlation: Least Square, Linear, Multi-Linear, Non-Linear
- Regression
- Non-normal distributions
- Non-parametric Methods: Analysis of Ranked Data
- Index Numbers

- Time Series Analysis
- Decision Making under Uncertainty
- Forecasting
- Statistical Process Control
- Using Calculator and Software Packages
- Management Science
 - Decision making
 - Linear programming
 - Graphical Method
 - Sensitivity Analysis and Computer Solution
 - Applications
 - Simplex Method
 - Simplex-based Sensitivity Analysis
 - Transportation, Assignment, and Transshipment Problems
 - Integer Linear Programming
 - Network Models
 - Project management: PERT/CPM
 - Inventory Models
 - Waiting Line Models
 - Computer Simulation
 - Decision Analysis
 - Multi-criteria Decision Problems
 - Forecasting
 - Markov Process
 - Dynamic Programming
 - Calculus-based Solution Procedures

Other

- History of Mathematics
- Branches of Mathematics
- Trends
- Professional Journals and Organizations
- Mathematics Education
- Relationship to other domains
- Role of Mathematics
- Pedagogical Issues
 - Teaching Methods
 - Curriculum