Metrics

M. Halstead: The Elements of Software Science

Based on these two quantities characteristics of any program:

n1 = the number of distinct operators in the program

n2 = the number of distinct operands in the program

They correspond to the keywords and data objects in a program.

Halstead length: H = n1 * logn1 + n2 * logn2, measures program complexity, therefore can predict defect rates.

N1 = actual operator count

N2 = actual operand count

N = N1 + N2, is the number of tokens in the program.

For most programs, H is very close to N.

Total number of defects in a program:

$$B = [(N1 + N2) * log2 (n1 + n2)]/3000$$

McCabe Cyclomatic Complexity:

Looks at the program's control flow graph as a measure of its complexity.

M = L - N + 2P, where:

L = the number of links in the control flow graph

N = the number of nodes in the control flow graph

P = the number of disconnected parts in the control flow graph.

Or, more intuitively:

M = C + 1, where:

C = the number of binary decisions in the control flow graph, if it has only one entry and one exit.

CRK Page 1 of 1

McCabe correlation with defect density, says that with complexities greater than 10 seem to have higher defect rates.

Function Point Counting

Allan Albrecht from IBM, 1979 (software sizing based on function point concept).

They generally apply to IS type of application.

Factors taken in consideration for function point calculation:

Elements		Count Weights			
	Low	Average		High	Total
EI	X3 +	X 4	+	X 6 =	
EO	X4 +	X 5	+	X7 =	
EQ	X3 +	X 4	+	X6 =	
ILF	X7 +	X 10	+	X 15 =	
EIF	X 5 +	X 7	+	X 10 =	

Total unadjusted function points

EI (external inputs)

EO (external outputs)

EQ (external inquiry)

ILF (internal logic files)

EIF (external logic files)

Input Complexity Matrix

FTRs	1 - 4 DETs	5 - 15 DETs	26+ DETs
0 - 1	Low	Low	Average
2	Low	Average	High
3+	Average	High	High

FTR (file types (user data groups) referenced

DET (data element type (field)

RET (record element type)

Output Complexity Matrix

CRK Page 2 of 2

FTRs	1 - 5 DETs	6 - 19 DETs	20+ DETs
0 - 1 2 - 3	Low Low	Low Average	Average High
4+	Average	High	High

Note: EQs use the higher of the input/output side

File Complexity Matrix

FTRs	1 - 19 DETs	20 - 50 DETs	1+ DETs
0 - 1	Low	Low	Average
2 - 5	Low	Average	High
6+	Average	High	High

The 14 general system characteristics (GSC) that are used to calculate the value adjustment factor (VAF):

data communication, distributed function, performance, heavily used configuration, transaction rates, on-line data entry, design for user efficiency, on-line update, complex processing, reusability, installation ease, operational ease, multiple sites, facilitate change.

Application function point count is:

[.65 + (.01 X GSC total)] X [unadjusted function point count] = adjusted function points

00

Association complexity:

AC = A - C + 2P, where:

A = the number of associations in the class diagram

C = the number of classes in the class diagram

P = the number of disconnected parts in the class diagram.

CRK Page 3 of 3